Analysis of hyperspectral fluorescence images
for poultry skin tumor inspection

Seong G. Kong, Yud-Ren Chen, Intaek Kim, and Moon S. Kim

We present a hyperspectral fluorescence imaging system with a fuzzy inference scheme for detecting skin
tumors on poultry carcasses. Hyperspectral images reveal spatial and spectral information useful for
finding pathological lesions or contaminants on agricultural products. Skin tumors are not obvious
because the visual signature appears as a shape distortion rather than a discoloration. Fluorescence
imaging allows the visualization of poultry skin tumors more easily than reflectance. The hyperspectral
image samples obtained for this poultry tumor inspection contain 65 spectral bands of fluorescence in the
visible region of the spectrum at wavelengths ranging from 425 to 711 nm. The large amount of
hyperspectral image data is compressed by use of a discrete wavelet transform in the spatial domain.
Principal-component analysis provides an effective compressed representation of the spectral signal of
each pixel in the spectral domain. A small number of significant features are extracted from two major
spectral peaks of relative fluorescence intensity that have been identified as meaningful spectral bands

for detecting tumors. A fuzzy inference scheme that uses a small number of fuzzy rules and Gaussian

membership functions successfully detects skin tumors on poultry carcasses.

Spatial-filtering tech-

niques are used to significantly reduce false positives. © 2004 Optical Society of America

OCIS codes:

1. Introduction

Hyperspectral imaging combines the photonic tech-
nologies of conventional imaging and spectroscopy to
produce images whose picture element (pixel) is as-
sociated with a spectral signature (spectrum). The
spectral information provided by this pixel is valu-
able in the discrimination, detection, and classifica-
tion of elements and structures within the image.?
Each hyperspectral image pixel is typically composed
of hundreds of contiguous narrow bands from the
electromagnetic spectrum. The data produced by
hyperspectral imaging sensors constitute a three-
dimensional (3D) cube in two spatial dimensions and
one spectral dimension. Spectral components to be
measured often involve quantities such as reflectance
and fluorescence ranging from the visible to short-
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wave infrared. This spectral imaging has the ability
to exploit multiple regions of the electromagnetic
spectrum to probe and analyze the composition of a
material. The materials comprising various objects
in a scene reflect, absorb, and emit electromagnetic
radiation in amounts that vary with the wavelength.
If the radiation arriving at the sensor is measured
over a sufficiently broad spectral range, the resulting
spectral signature can be used to uniquely character-
ize and identify any given material. Hyperspectral
imaging systems have been utilized in a wide variety
of scientific disciplines2? that include airborne—
satellite remote sensing of Earth resources, environ-
mental monitoring, mapping of the Earth,
management of water or agricultural resources, for-
estry, microscopic studies, agricultural product in-
spection, and the detection and classification of
hidden targets in military applications.

One area of application that uses machine-vision
systems is inspection and quality control in auto-
mated production processes.t Manufacturers in
many industries depend on machine-vision inspec-
tion systems in order to produce high-quality prod-
ucts. Traditionally, the inspection processes are
performed by trained human inspectors, and, typi-
cally, a small number of representative samples from
a large production run are examined. The inspec-
tion and classification of agricultural products can be
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a highly repetitive and tedious task. Poultry car-
casses with pathological problems must be identified
and removed from food-processing lines to ensure
wholesome products. Human inspectors are often
required to examine 30-35 poultry samples per
minute in the course of an 8-h day. Such working
conditions can lead to repetitive motion injuries and
attention and fatigue problems. Rapid, noninvasive
machine-vision inspection methods for assessing haz-
ardous conditions in food production would provide a
substantial benefit in the quest to ensure the highest
quality of inspection.

Hyperspectral imagery shows great potential for
detection and classification of biomedical abnormali-
ties because it provides both spatial and spectral fea-
tures about the objects of interest in the image. A
tumor is not as visually obvious as other pathological
diseases such as septicemia, air sacculitis, and bruise
because its spatial signature appears as a shape dis-
tortion rather than a discoloration. Poultry skin tu-
mors are ulcerous lesions that are surrounded by a
rim of thickened skin and dermis.? Tumorous car-
casses may also have swollen or enlarged tissue
caused by the uncontrolled growth of new tissue.
Normal poultry skin often exhibits higher emissions
compared with tumorous skin. Therefore conven-
tional vision systems operating only in the visual
spectrum may fail to meet every requirement of the
high standards of a quality inspection. Detection of
poultry skin tumors by use of hyper—multispectral
imaging has been reported®? to have the ability to
differentiate wholesome and unwholesome agricul-
tural products. Studies have also shown that the
presence of defects is more easily detected by use of
two or more bands of images from multispectral im-
ages.89

This paper presents an analysis of hyperspectral
fluorescence images for detecting skin tumors on
poultry carcasses. A number of compounds emit flu-
orescence in the visible region of the spectrum when
excited with ultraviolet (UV) radiation.l® It has
been shown that fluorescence imaging reveals poul-
try skin tumors more easily than reflectance.’> Fig-
ure 1 shows the proposed procedure of hyperspectral
fluorescence image analysis for poultry skin tumor
detection. An important function of hyperspectral
image processing is to eliminate the redundancy in
the spectral and spatial sample data while preserving
the essential features needed for discrimination.
Compression of the huge amount of hyperspectral
data leads to significant reductions in computational
complexity. The spatial content of hyperspectral
images of poultry carcass samples are compressed by

use of a discrete wavelet transform (DWT).
Principal-component analysis (PCA) provides an ef-
ficient means for the compression of the spectral sig-
natures without losing relevant information.
Extraction of features indicative of spectral behaviors
is preferable to a straightforward classification be-
cause it also leads to the reduction of computational
complexity. This study utilizes the spectral bands
that correspond to those spectral features that pro-
vide meaningful information for the detection of skin
tumors. The hyperspectral imaging system de-
scribed in this paper is used as a research tool to
determine the several spectral bands that can be im-
plemented in a multispectral imaging system for the
on-line inspection of poultry carcasses. Features
are obtained from the spectral peaks of relative flu-
orescence intensity of hyperspectral image samples.
A fuzzy inference system with a small number of
classification rules determines if a pixel belongs to
normal skin or a tumor on the basis of these spectral
features. Postprocessing with spatial-filtering tech-
niques such as median and morphological filters re-
moves false positives and refines the decision or
classification.

2. Hyperspectral Fluorescence Imaging

A. Hyperspectral Fluorescence Imaging System

The Instrumentation and Sensing Laboratory (ISL)
at Beltsville Agriculture Research Center has devel-
oped a laboratory-based line-by-line hyperspectral
imaging system capable of reflectance and fluores-
cence imaging for uses in food safety and quality
research.!’ It employs a pushbroom method in
which a line of spatial information with a full spectral
range per spatial pixel is captured sequentially to
cover a volume of spatial and spectral data. The key
components of the system are a CCD camera, a spec-
trograph, a sample transport mechanism, and appro-
priate lighting sources. Figure 2 shows a schematic
diagram of the hardware components of the ISL hy-
perspectral imaging system.

The system is equipped with two independent illu-
mination sources for reflectance and fluorescence
measurements. For fluorescence measurement, two
fluorescent lamp assemblies (Model XX-15A, Spec-
tronics Corp., New York) provide a near-uniform
UV-A (365-nm) excitation to the sample area.
Short-pass filters (UG1, Schott Glass Co., Pennsylva-
nia) placed in front of the lamp housings are used to
prevent transmittance of radiations greater than ap-
proximately 400 nm and thus eliminate potential
spectral contamination by incident light reflected
from the sample at longer wavelengths. A precision
positioning table transports sample materials
through the line of field of view in a transverse direc-
tion while the stationary imaging system acquires
data via line-by-line scans. The imaging system is
a laboratory-based system designed for operation in a
darkened room. Sample materials are placed on
a tray painted with nonfluorescent, flat black paint to
minimize background scattering.
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Fig. 2.

B. Acquisition of Hyperspectral Image Data

Hyperspectral sensors collect the spectral signatures
of a number of contiguous spatial locations to form
hyperspectral sensor imagery. A hyperspectral im-
age can be represented as a 3D volume or cube of
data; single-band images are stacked along a spectral
axis. It contains spatial information measured at a
sequence of individual wavelengths across a suffi-
ciently broad spectral band. A hyperspectral image
can be denoted by I(u, v, \;), where indices u = 0,

1,...,N-1,v=0,1,...,M — 1 are spatial coor-
dinates and \;,i = 1, .. ., L, indicates spectral bands
(channels).

The actual data format captured by the hyperspec-
tral sensor is a two-dimensional (2D) array U(p, q).
By use of the fact that the gth column of U constitutes
the image with the band \,, U(p, q) can be easily
converted into 3D image volume I(x, v, \). For a
fixed N\,, I(u, v, \,) represents the kth-band image.
Ifu and v are fixed, then I(«, v, \) stands for spectrum
or spectral information. Two images from adjacent
bands (\; and A;. ) have a high degree of similarity,
whereas images from distant bands can be less sim-
ilar and may have independent information. Hyper-
spectral images are useful in the analysis of a scene
as no single-band image has sufficient information to
describe the information of the scene completely.

A total of 12 chicken carcasses were collected from
a poultry processing plant (Allen Family Foods, Inc.,
Cordova, Maryland) in March and May 2002. The
Food Safety and Inspection Service veterinarian at
the plant identified the conditions of the chicken car-
casses. They were put in plastic bags to minimize
dehydration and then placed in a cooler with ice.
The imaging measurements were conducted on the
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same day after the carcasses were transported to the
ISL within 2 h. A typical hyperspectral image of a
poultry sample consists of approximately N = 460,
M = 400 pixels, each pixel with 1 mm X 1 mm spatial
resolution. Each scan takes 0.5 s; thus it requires
200 s to complete a 3D hyperspectral image of a
chicken sample. In this study, 65 spectral bands (L)
from wavelength \; = 425.4 nm to \g5 = 710.7 nm
were used. Table 1 shows wavelength values of each
spectral band. Figure 3 shows 12 spectral band im-
ages of a poultry carcass sample captured by use of
the ISL hyperspectral fluorescence imaging system
for N5, Mo, - - - 5 Ngo-

3. Hyperspectral Image Data Representation

A. Data Compression in the Spatial Domain

Hyperspectral data analysis requires efficient pro-
cessing of the massive amount of data that result
from the combination of spatial and spectral informa-
tion acquired by the sensors. The high-dimensional
data space generated by the hyperspectral sensors
creates a new challenge for conventional spectral
data analysis techniques. Dimensionality reduction
can be achieved without significantly degrading de-
tection performance or decreasing the separability
among the different classes. A sample image of a
poultry carcass has a spatial resolution of 460 X 400
pixels with 65 spectral bands. As each element is
encoded by use of 16 bits, the resulting size of a
sample poultry image will be approximately 24 mega-
bytes (= 460 X 400 pixels X 65 bands X 2 bytes). As
a second example, one complete Airborne Visible—
Infrared Imaging Spectrometer scene contains more
than 140 megabytes (= 224 bands X 512 X 614 pix-



Table 1. Wavelength Values of Each Spectral Band

Band Wavelength Band Wavelength Band Wavelength Band Wavelength
Number (nm) Number (nm) Number (nm) Number (nm)

1 425.45 18 500.08 35 575.54 52 651.83
2 429.82 19 504.50 36 580.01 53 656.35
3 434.19 20 508.92 37 584.48 54 660.86
4 438.56 21 513.34 38 588.95 55 665.38
5 442.93 22 517.76 39 593.42 56 669.90
6 447.31 23 522.19 40 597.90 57 674.43
7 451.70 24 526.62 41 602.37 58 678.96
8 456.08 25 531.05 42 606.86 59 683.49
9 460.47 26 535.49 43 611.34 60 688.02

10 464.86 27 539.93 44 615.83 61 692.56

11 469.25 28 544.37 45 620.32 62 697.10

12 473.65 29 548.82 46 624.81 63 701.64

13 478.04 30 553.26 47 629.31 64 706.18

14 482.45 31 557.71 48 633.81 65 710.73

15 486.85 32 562.17 49 638.31

16 491.26 33 566.62 50 642.81

17 495.67 34 571.08 51 647.32

els X 2 bytes). There is no doubt that the hyper-
spectral database will grow rapidly in size. The
efficient distribution and use of this amount of infor-
mation will be challenging.

The wavelet transform is a signal analysis tool that
provides a systematic means for analyzing signals at
various scales or resolutions. With DWTs,2 signals
are analyzed over a discrete set of scales. Typically,
the discrete scales are dyadic (2, 4, 8, 16, . . .), and the
transform can be implemented by use of a variety of
fast algorithms and customized hardware. The
most common implementation of the DWT is the mul-
tiresolutional dyadic filter tree implementation.
The DWT can be described mathematically as a set of
inner products between a finite-length sequence and
a discretized wavelet basis. Each inner product re-

Fig. 3. Hyperspectral fluorescence images of a poultry carcass
sample (bands 5, 10, through 60, for a total of 12 bands).

sults in a wavelet transform coefficient. Thus the
DWT can be expressed as
N-1
Wi(j, k) = 2, f(n)d,u(n), (1)
n=0

where W,(j, k) is a DWT coefficient and f(n) is a
spectral signal with length N as a function of spectral
band. The expression

— 2k
" ) @)

1
dbjp(n) = E ¢<2J-

is the discretized wavelet basis, and 2/ and 2’k are the
discretized versions of the scale and translation pa-
rameters. In practice, the DWT can be implemented
in a computationally efficient manner via the dyadic
filter tree algorithm,!3 which represents the wavelet
basis as a set of high-pass and low-pass filters in a
filter bank. Level-1 discrete wavelet decomposition
finds two signal components from the original signal
by filtering with a low-pass filter and a high-pass
filter. Following the filtering, the signal is deci-
mated by a factor of 2. The outputs of the low-pass
branch are called wavelet approximation coefficients
A;, and the outputs of the high-pass branch are called
wavelet detail coefficients D; of the original signal:

L-1

A;a(i) =2 H()A[(2i + 1), (3)
=0

L-1

D)) = > GU)A2i +1). 4)
=0

The functions G and H are the finite impulse re-
sponses of the high-pass and low-pass filters. A, is
equal to the original signal f(n).

The DWT can be effectively used to reduce a high
volume of hyperspectral data.l* For images, the
wavelet decomposition is executed along the row- and

1 February 2004 / Vol. 43, No. 4 / APPLIED OPTICS 827



®)

Fig.4. Two-dimensional discrete wavelet decomposition. (a) Re-
cursive filter tree implementation of the DWT. Filter banks for
DWT. (b) Level-1 wavelet decomposition of a single-band image.
Detail components are shown in reverse gray levels. LPF, low-
pass filter; HPF, high-pass filter.

columnwise directions. The 2D wavelet decomposi-
tion transforms an image of N X M size to approxi-
mation (cA) and horizontal (cH), vertical (cV), and
diagonal (cD) details of approximately N/2 X M/2
size each. The approximation is the high-scale, low-
frequency components of the signal. The details cor-
respond to the low-scale, high-frequency components.
Figure 4(a) shows a level-1 discrete wavelet decom-
position procedure of a 2D image. Different choice of
wavelets produces different sets of decomposed sig-
nals. Only the approximation component cA is used
in the analysis to reduce the amount of data. The
detail components cH, ¢V, and cD show relatively low
energy content and therefore are not considered.
Figure 4(b) shows the approximation and the detail
components of a level-1 2D discrete wavelet decom-
position of the band-5 poultry image sample. Detail
components are shown in reverse gray levels. The
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Daubechies wavelets of order 5 are used to decompose
the hyperspectral images5 into components. Visual
characteristics are well preserved in the approxima-
tion component at a smaller image size.

B. Dimensionality Reduction in the Spectral Domain

PCA finds the best approximation that minimizes the
sum of the squares of the errors introduced by the
dimensionality reduction.’® The goal of dimension-
ality reduction is to map data vectors y in an
L-dimensional space (yq, ..., y;) onto the feature

vectors a in an M-dimensional space (aq, ..., a;),
with M < L. Lete,...,e; bea setof eigenvectors
of the covariance matrix of the n vectors y,...,y,

for training. Then a vector y can be represented as
a linear combination of orthogonal eigenvectors as

L
y= E ae;, (5)
i-1

where a; = ey, i = 1,..., L. One can achieve
dimensionality reduction by retaining only a subset
M of the basis vectors e;. Choosing eigenvectors cor-
responding to M largest eigenvalues minimizes the
square error of approximation. The M coefficients a;
that represent the original data are referred to as
principal components. The spectral dimension can
be transformed into a vector space with
M-dimensional space spanned by M principal compo-
nents or factors. The first M factors account for
most of the variance, with the first factor correspond-
ing to the largest possible variance. The minimum
error equals the sum of L — M smallest eigenvalues.
Each spectrum can be adequately represented by a
few factors in factor space instead of the original
spectral vectors. Figure 5 shows the eigenvectors
and the energy content of the principal components
obtained from the hyperspectral image data. The
eigenvectors corresponding to the first three largest
eigenvalues are shown in Fig. 5(a). Figure 5(b) re-
veals that most energy is concentrated on the first
few components. The first three principal compo-
nents retain almost all the energy of the spectral
signature of hyperspectral image pixel.

Spectral characterization is crucial in hyperspec-
tral image analysis. Figure 6 demonstrates that
spectral signals of the hyperspectral images are rep-
resented with a small number of principal compo-
nents. PCA(n) indicates spectral representation by
use of the first n principal components. Owing to a
relatively large number of normal pixels, the first
PCA component closely represents the spectral char-
acteristics of normal tissue. Five PCA components
were enough to represent the spectral signals of both
the normal and the tumor pixels.

4. Fuzzy Inference for Detecting Skin Tumors

A classifier is to distinguish skin tumors from normal
tissue by use of the spatial and the spectral features
of hyperspectral images.1”1® Fuzzy inference
schemes incorporate experts’ domain knowledge into
a mathematical model of decision making. In this
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paper a fuzzy classification system with a small num-
ber of fuzzy rules and features is proposed at a low
classification system complexity as required in most
practical vision-based inspection applications.

A. Feature Extraction

The spectral signature of fluorescence intensity re-
veals the characteristics of the normal tissues and
tumors of poultry carcass skin. Figure 7 shows the
relative fluorescence intensity of the pixel as a func-
tion of spectral bands for the three categories: nor-
mal, tumor, and background. A human skin tumor
shows similar fluorescence responses in the blue-
green regions of the spectrum when excited with
350-nm radiation.2° Pixels obtained arbitrarily
from the three tissue categories were used to obtain
this graph. Normal tissues typically show higher

Normal Tissue

T T T

05

| - —— Original
045 j — PCA®)
----- PCA(3)
PCA(1)

04t

0351

D31

02t

Relative Fluorescence Intensity (RFI)
(=1
R

/
015t
ot1f
005
a 1 | . . . .
0 10 20 30 40 50 60
Spectral Band
(a)
Tumor
a5 T T T T T T
— 045} ~— Qriginal | J
—— PCA(5)
o4t PCA(3) | |
PCA(1)
036} E

Retative Fluorescence Intensity (RFI

0 10 20 30 40 50 B0
Spectral Band

(b

Fig. 6. Representation of spectral signals with a small number of
principal components. (a) Normal tissue and (b) tumor.

fluorescence emissions than tumors with relatively
wide variations in fluorescence intensity. Normal
tissues have a dominant peak response near band 20,
whereas tumor tissues demonstrate multiple signifi-
cant responses. Tumor pixels have lower fluores-
cence intensity on average but show strong responses
near band 20 and at band 45, which make tumor
pixels distinguishable from normal tissue. Back-
ground pixels show much lower fluorescence inten-
sity with no spectral peaks owing to the tray painted
with nonfluorescent, flat black paint.

Spectral characteristics of the pixels from the three
categories can be utilized to define the features for
tumor inspection. Features are computed from the
level-1 approximation component of the discrete
wavelet decomposition of hyperspectral image sam-
ples. The spectral signature used in this experiment
is reconstructed from the first five principal compo-
nents. Two features were obtained from the major
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spectral peaks of relative fluorescence intensity.
The first major peak response is near band 20. The
second peak response is identified as near band 45.
Fluorescence emission from chicken tissues are broad
in nature; thus a five-point running average over
bands 44 to 48 was used to smooth the peak re-
sponses. The feature (x,) defines the average fluo-
rescence of the major peak response from bands 20 to
24. The second feature (x,) measures the difference
of the two peak responses. Equations (6) and (7)
show the definitions of the two spectral features used
in the classification:

1 24
X1 = o E I(u> v, )\i), (6)
5 =20
24 48
E I(u: U, )\L) - E I(u7 U$ )\'l)
Xy = =20 T =44 . (7)
E I(u$ U, )\L)

=20

Figure 8 shows a scatter plot of typical features
from each category in the feature space x; and x,.
Selected features computed from the major peaks of
the relative fluorescence intensity indicate that the
feature space is well defined for our classification
task. The features well represent the tumor and
normal tissue classes with sufficient degree of sepa-
ration.

B. Fuzzy Inference

Fuzzy logic is a superset of conventional logic that
has been extended to handle the concept of partial
truth. Truth values in fuzzy logic take on continu-
ous values in the interval [0, 1], between completely
true (1) and completely false (0). Conventional or
Boolean logic uses the binary truth values of {0, 1}.
Fuzzy logic is evolved from the notion of fuzzy sets in
which an element can be a member of a fuzzy set to a
degree between 0 and 1. Fuzzy rules can mathemat-
ically model the uncertainty of natural language.
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Fuzzy logic contains fuzzy rules usually repre-
sented in linguistic form.21 A small number of fuzzy
rules are introduced to classify tumors, normal tis-
sue, and background in the hyperspectral images on
the basis of the features defined in Eqgs. (6) and (7).
The two features x; and x, correspond to fuzzy vari-
ables with membership functions. The variable y
indicates the output variable of the fuzzy system.
Fuzzy decision rules for detecting poultry skin tu-
mors can be articulated in the following linguistic
forms:

Rule 1. If x; is medium (MED) and x, is small
(SML), then y is tumor.

Rule 2. If x; is high (HGH) and x, is big (BIG),
then y is normal.

Rule 3. Ifx, is low (LOW), then y is background
(BG).

Three linguistic labels, LOW, MED, and HGH, are
assigned to the fuzzy variable x;. The variable x,
has two labels, SML and BIG. All the labels are
represented by the membership functions to repre-
sent the fuzziness nature of the measurement.
Gaussian membership functions are adopted for their
parametric forms. Equation (8) shows the Gaussian
membership function of a fuzzy label A with the two
parameters, the center ¢ and the width w,

(x — C)Q]

2uw?

mu(x) = exp[ — (8)

Figure 9 shows the Gaussian membership func-
tions for the two fuzzy variables x; and x,. The
membership functions are characterized by different
values of center and width. In Fig. 9(a) the centers
are 0, 0.2, and 1, and the corresponding widths are
0.05, 0.12, and 0.4. The membership functions in
Fig. 9(b) have centers at 0 and 1 with corresponding
widths of 0.12 and 0.3.

Fuzzy inference determines the degree (member-



Membership

086 07 08 08 1

Membership

®
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(a) Fuzzy variable x; (centers: 0, 0.2, 1; widths: 0.05, 0.12, 0.4)
and (b) fuzzy variable x, (centers: 0, 1; widths: 0.12, 0.3).

ship value) to which a pixel belongs to a class. Fuzzy
inference takes the conjunction operation of the fuzzy
variables in each rule and aggregates partial output
of all the fuzzy rules. The popular max—min fuzzy
inference scheme adopts minimum (min) conjunction
and maximum (max) aggregation. The minimum
conjunction operation calculates the degree of firing
as the minimum of corresponding membership values
of the fuzzy variables:

Maumor(y) = min[mygp(x1), Mmewr(x2) ], 9
Mmyormar(y) = min[mycu(x1), mpe(xz)], (10)
mpc(y) = myow(xq). (11)

Rule aggregation procedure integrates partial out-
puts of all the fuzzy rules to produce a combined
output. The max rule aggregation procedure finds
the fuzzy decision as the maximum of the entire fuzzy

©

Fig. 10. Detection of tumors with the fuzzy classifier for the train-
ing sample of band 20 (\y,). (@) Original image, (b) fuzzy inference
system output, and (c) fuzzy inference system output with mor-
phological filtering.

rule outputs as in Eq. (12), as the degree to which the
fuzzy system output y belongs to one of the three
categories:

m*(y) = max{myormar(y), Mrumor(y), Mmpc(y)}.
(12)

The fuzzy inference output indicates the degree to
which a pixel belongs to one of the three categories.
Defuzzification finds the crisp (not fuzzy) decision
output. The binary decision output that a pixel I(u,
v) is assigned to the tumor class can be represented
by

1 ifm*(y) = moumor(y)

Dil(u, v)} {0 otherwise - (13)

Additive fuzzy systems use additive rule aggrega-
tion instead of the max operation. Often defuzzified
output can be found as the centroid of the combined
fuzzy rule outputs. The centroid fuzzy output y* is
computed as in Eq. (14), where y,; denotes the class
centroid for the normal class, y, for the tumor class,
and y; for the background class:

% Yimyormar(y) + Yomaumor(y) + ¥smpa(y)
Myorman(y) + Mrumor(y) + mypa(y)

(14)

1 February 2004 / Vol. 43, No. 4 / APPLIED OPTICS 831



(©)

Fig. 11. Detection of tumors with the fuzzy inference system for
testing sample of band 20 (\,,). (a) Original image, (b) fuzzy
system output, and (c) fuzzy system output with median filtering.

Then the decision by the additive fuzzy system be-
comes

1 ify* € J(y,)

Dil(u, v)i = {0 otherwise ’ (15)

where J(y,) denotes the interval in the output space

y that contains the centroid y, corresponding to the
tumor category.

Among the twelve chicken samples, one chicken

sample is used for training of the fuzzy system pa-

rameters, and eleven samples are used for testing.
Figure 10 shows a poultry skin tumor detection result
for the image used for training by the fuzzy inference
system. Figure 10(a) shows the original image of
band 20, Fig. 10(b) indicates the binary detection
result D{I(u, v)} by the fuzzy decision rules, and the
postprocessing result that uses morphology filters is
shown in Fig. 10(c). White dots superimposed on
the image show the pixels of skin tumors classified by
the fuzzy rules. Figure 11 shows the original image
and classification result of a poultry sample not used
in training. Median filtering of either 3 X 3 or 5 X
5 size applied to fuzzy classification output signifi-
cantly reduces false positive alarms. Heuristics
such as the knowledge that tumors often have oval or
circular shapes or that tumors are likely bigger than
a certain size can be used to further eliminate spuri-
ous tumor regions.

Table 2 summarizes the results of poultry skin tu-
mor inspection that uses the fuzzy inference system
with and without median filtering in the spatial do-
main. In both cases the fuzzy inference system
achieved a detection rate of 82%. It is observed that
isolated tumors are easily detected as long as they are
big enough, but detection failure is likely to occur
when tumors are located closely together. Missed
tumors are attributed to a multiple of small, early-
stage tumor spots. Spatial filtering such as morpho-
logical and median filtering significantly reduced the
occurrence of false positive classifications.

5. Conclusion

The hyperspectral fluorescence imaging system de-
veloped by the Instrument and Sensing Laboratory,
together with a fuzzy inference scheme, finds an ef-
fective machine-vision approach for the detection of
skin tumors on poultry carcasses. Skin tumors are
not as visually obvious as other pathological diseases
because the signature usually appears as a shape
distortion rather than a discoloration. This fact
makes it difficult to conduct regular pattern-
recognition tasks based on the reflectance images.
The hyperspectral imaging system captures the

Table 2. Classification Performance

Fuzzy Classifier

Fuzzy Classifier with Spatial Filtering

Image Number Number False Number Number False Number
Number of Tumors found positive missed found positive missed
1 8 8 3 0 8 2 0
2 2 2 2 0 2 0 0
3 0 0 0 0 0 0 0
4 3 3 2 0 3 1 0
5 2 2 2 0 2 2 0
6 2 1 1 1 1 1 1
7 2 2 1 0 2 0 0
8 0 0 0 0 0 0 0
9 4 3 1 1 3 0 1
10 7 3 2 4 3 1 4
11 3 3 2 0 3 1 0
Total 33 27 (82%) 16 6 (18%) 217(82%) 8 6 (18%)
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fluorescence image data from poultry samples. Fea-
tures obtained from the fluorescence images demon-
strate superior contrast and therefore provide a
better discrimination capability for poultry skin tu-
mor detection. A large amount of hyperspectral
data is compressed in the spatial domain by use of
discrete  wavelet transforms. The principal-
component analysis gives an effective representation
of spectral signatures in terms of a few principal
components for the purpose of data compression in
the spectral domain. A fuzzy inference system with
a small number of decision rules was developed for
detecting poultry skin tumors. The level-1 approxi-
mation of the DWT was used to extract the features
for skin tumor detection. Two features are obtained
from the two dominant spectral peaks of the relative
fluorescence intensity distribution as a function of
spectral bands. The first feature measures the av-
erage intensity of the dominant peak, which consists
of spectral bands 20 to 24. The second feature is
created from the difference of the dominant peak of
the first feature and the spectral peak observed from
bands 44 to 48. The fuzzy inference system utilizes
these two features as inputs for inference. A small
number of fuzzy rules using the max-min fuzzy
inference scheme successfully detect poultry skin tu-
mors. The use of spatial filtering with morphologi-
cal and median filters decreases the number of false
positive classifications.
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